A Visible Factor of the Heegner Index
نویسنده
چکیده
Let E be an optimal elliptic curve over Q of conductor N , such that the L-function of E vanishes to order one at s = 1. Let K be a quadratic imaginary field in which all the primes dividing N are split and such that the L-function of E over K also vanishes to order one at s = 1. In view of the Gross-Zagier theorem, the Birch and Swinnerton-Dyer conjecture says that the index in E(K) of the subgroup generated by the Heegner point is equal to the product of the Manin constant of E, the Tamagawa numbers of E, and the square root of the order of the Shafarevich-Tate group of E (over K). We extract an integer factor from the index mentioned above and relate this factor to certain congruences of the newform associated to E with eigenforms of analytic rank bigger than one. We use the theory of visibility to show that, under certain hypotheses (which includes the first part of the Birch and Swinnerton-Dyer conjecture on rank), if an odd prime q divides this factor, then q divides the order of the Shafarevich-Tate group, as predicted by the Birch and Swinnerton-Dyer conjecture.
منابع مشابه
VISIBILITY FOR ANALYTIC RANK ONE or A VISIBLE FACTOR OF THE HEEGNER INDEX
Let E be an optimal elliptic curve over Q of conductor N , such that the L-function of E vanishes to order one at s = 1. Let K be a quadratic imaginary field in which all the primes dividing N are split and such that the L-function of E over K also vanishes to order one at s = 1. In view of the Gross-Zagier theorem, the Birch and Swinnerton-Dyer conjecture says that the index in E(K) of the sub...
متن کاملA visible factor for analytic rank one
Let E be an optimal elliptic curve of conductor N , such that the L-function of E vanishes to order one at s = 1. Let K be a quadratic imaginary field in which all the primes dividing N split and such that the L-function of E over K also vanishes to order one at s = 1. In view of the Gross-Zagier theorem, the second part of the Birch and Swinnerton-Dyer conjecture says that the index in E(K) of...
متن کاملVISIBILITY FOR ANALYTIC RANK ONE or A VISIBLE FACTOR FOR ANALYTIC RANK ONE
Let E be an optimal elliptic curve of conductor N , such that the L-function of E vanishes to order one at s = 1. Let K be a quadratic imaginary field in which all the primes dividing N split and such that the L-function of E over K also vanishes to order one at s = 1. In view of the Gross-Zagier theorem, the second part of the Birch and Swinnerton-Dyer conjecture says that the index in E(K) of...
متن کاملCHOW-HEEGNER POINTS ON CM ELLIPTIC CURVES AND VALUES OF p-ADIC L-FUNCTIONS
Introduction 1 1. Basic notions 6 1.1. Motives for rational and homological equivalence 6 1.2. Algebraic Hecke characters 7 1.3. The motive of a Hecke character 8 1.4. Deligne-Scholl motives 9 1.5. Modular parametrisations attached to CM forms 10 1.6. Generalised Heegner cycles and Chow-Heegner points 13 1.7. A special case 15 2. Chow-Heegner points over Cp 15 2.1. The p-adic Abel-Jacobi map 15...
متن کاملHeegner points, Stark-Heegner points, and values of L-series
Elliptic curves over Q are equipped with a systematic collection of Heegner points arising from the theory of complex multiplication and defined over abelian extensions of imaginary quadratic fields. These points are the key to the most decisive progress in the last decades on the Birch and Swinnerton-Dyer conjecture: an essentially complete proof for elliptic curves over Q of analytic rank ≤ 1...
متن کامل